Metamath Proof Explorer


Theorem rabssrabd

Description: Subclass of a restricted class abstraction. (Contributed by AV, 4-Jun-2022)

Ref Expression
Hypotheses rabssrabd.1 φ A B
rabssrabd.2 φ ψ x A χ
Assertion rabssrabd φ x A | ψ x B | χ

Proof

Step Hyp Ref Expression
1 rabssrabd.1 φ A B
2 rabssrabd.2 φ ψ x A χ
3 3anan32 φ ψ x A φ x A ψ
4 3 2 sylbir φ x A ψ χ
5 4 ex φ x A ψ χ
6 5 ss2rabdv φ x A | ψ x A | χ
7 rabss2 A B x A | χ x B | χ
8 1 7 syl φ x A | χ x B | χ
9 6 8 sstrd φ x A | ψ x B | χ