Metamath Proof Explorer


Theorem rabsssn

Description: Conditions for a restricted class abstraction to be a subset of a singleton, i.e. to be a singleton or the empty set. (Contributed by AV, 18-Apr-2019)

Ref Expression
Assertion rabsssn x V | φ X x V φ x = X

Proof

Step Hyp Ref Expression
1 df-rab x V | φ = x | x V φ
2 df-sn X = x | x = X
3 1 2 sseq12i x V | φ X x | x V φ x | x = X
4 ss2ab x | x V φ x | x = X x x V φ x = X
5 impexp x V φ x = X x V φ x = X
6 5 albii x x V φ x = X x x V φ x = X
7 df-ral x V φ x = X x x V φ x = X
8 6 7 bitr4i x x V φ x = X x V φ x = X
9 3 4 8 3bitri x V | φ X x V φ x = X