Metamath Proof Explorer
Description: Abstract builder using the constant wff T. . (Contributed by Thierry Arnoux, 4-May-2020)
|
|
Ref |
Expression |
|
Hypothesis |
rabtru.1 |
|
|
Assertion |
rabtru |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
rabtru.1 |
|
2 |
|
tru |
|
3 |
|
nfcv |
|
4 |
|
nftru |
|
5 |
|
biidd |
|
6 |
3 1 4 5
|
elrabf |
|
7 |
2 6
|
mpbiran2 |
|
8 |
7
|
eqriv |
|