Metamath Proof Explorer


Theorem rabtru

Description: Abstract builder using the constant wff T. . (Contributed by Thierry Arnoux, 4-May-2020)

Ref Expression
Hypothesis rabtru.1 _ x A
Assertion rabtru x A | = A

Proof

Step Hyp Ref Expression
1 rabtru.1 _ x A
2 tru
3 nfcv _ x y
4 nftru x
5 biidd x = y
6 3 1 4 5 elrabf y x A | y A
7 2 6 mpbiran2 y x A | y A
8 7 eqriv x A | = A