Metamath Proof Explorer


Theorem rabun2

Description: Abstraction restricted to a union. (Contributed by Stefan O'Rear, 5-Feb-2015)

Ref Expression
Assertion rabun2 x A B | φ = x A | φ x B | φ

Proof

Step Hyp Ref Expression
1 df-rab x A B | φ = x | x A B φ
2 df-rab x A | φ = x | x A φ
3 df-rab x B | φ = x | x B φ
4 2 3 uneq12i x A | φ x B | φ = x | x A φ x | x B φ
5 elun x A B x A x B
6 5 anbi1i x A B φ x A x B φ
7 andir x A x B φ x A φ x B φ
8 6 7 bitri x A B φ x A φ x B φ
9 8 abbii x | x A B φ = x | x A φ x B φ
10 unab x | x A φ x | x B φ = x | x A φ x B φ
11 9 10 eqtr4i x | x A B φ = x | x A φ x | x B φ
12 4 11 eqtr4i x A | φ x B | φ = x | x A B φ
13 1 12 eqtr4i x A B | φ = x A | φ x B | φ