Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
The difference, union, and intersection of two classes
Class abstractions with difference, union, and intersection of two classes
rabun2
Next ⟩
Restricted uniqueness with difference, union, and intersection
Metamath Proof Explorer
Ascii
Unicode
Theorem
rabun2
Description:
Abstraction restricted to a union.
(Contributed by
Stefan O'Rear
, 5-Feb-2015)
Ref
Expression
Assertion
rabun2
⊢
x
∈
A
∪
B
|
φ
=
x
∈
A
|
φ
∪
x
∈
B
|
φ
Proof
Step
Hyp
Ref
Expression
1
df-rab
⊢
x
∈
A
∪
B
|
φ
=
x
|
x
∈
A
∪
B
∧
φ
2
df-rab
⊢
x
∈
A
|
φ
=
x
|
x
∈
A
∧
φ
3
df-rab
⊢
x
∈
B
|
φ
=
x
|
x
∈
B
∧
φ
4
2
3
uneq12i
⊢
x
∈
A
|
φ
∪
x
∈
B
|
φ
=
x
|
x
∈
A
∧
φ
∪
x
|
x
∈
B
∧
φ
5
elun
⊢
x
∈
A
∪
B
↔
x
∈
A
∨
x
∈
B
6
5
anbi1i
⊢
x
∈
A
∪
B
∧
φ
↔
x
∈
A
∨
x
∈
B
∧
φ
7
andir
⊢
x
∈
A
∨
x
∈
B
∧
φ
↔
x
∈
A
∧
φ
∨
x
∈
B
∧
φ
8
6
7
bitri
⊢
x
∈
A
∪
B
∧
φ
↔
x
∈
A
∧
φ
∨
x
∈
B
∧
φ
9
8
abbii
⊢
x
|
x
∈
A
∪
B
∧
φ
=
x
|
x
∈
A
∧
φ
∨
x
∈
B
∧
φ
10
unab
⊢
x
|
x
∈
A
∧
φ
∪
x
|
x
∈
B
∧
φ
=
x
|
x
∈
A
∧
φ
∨
x
∈
B
∧
φ
11
9
10
eqtr4i
⊢
x
|
x
∈
A
∪
B
∧
φ
=
x
|
x
∈
A
∧
φ
∪
x
|
x
∈
B
∧
φ
12
4
11
eqtr4i
⊢
x
∈
A
|
φ
∪
x
∈
B
|
φ
=
x
|
x
∈
A
∪
B
∧
φ
13
1
12
eqtr4i
⊢
x
∈
A
∪
B
|
φ
=
x
∈
A
|
φ
∪
x
∈
B
|
φ