Metamath Proof Explorer


Theorem rabxfr

Description: Membership in a restricted class abstraction after substituting an expression A (containing y ) for x in the the formula defining the class abstraction. (Contributed by NM, 10-Jun-2005)

Ref Expression
Hypotheses rabxfr.1 _ y B
rabxfr.2 _ y C
rabxfr.3 y D A D
rabxfr.4 x = A φ ψ
rabxfr.5 y = B A = C
Assertion rabxfr B D C x D | φ B y D | ψ

Proof

Step Hyp Ref Expression
1 rabxfr.1 _ y B
2 rabxfr.2 _ y C
3 rabxfr.3 y D A D
4 rabxfr.4 x = A φ ψ
5 rabxfr.5 y = B A = C
6 tru
7 3 adantl y D A D
8 1 2 7 4 5 rabxfrd B D C x D | φ B y D | ψ
9 6 8 mpan B D C x D | φ B y D | ψ