Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Introduce the Axiom of Power Sets
rabxfr
Metamath Proof Explorer
Description: Membership in a restricted class abstraction after substituting an
expression A (containing y ) for x in the the formula
defining the class abstraction. (Contributed by NM , 10-Jun-2005)
Ref
Expression
Hypotheses
rabxfr.1
⊢ Ⅎ _ y B
rabxfr.2
⊢ Ⅎ _ y C
rabxfr.3
⊢ y ∈ D → A ∈ D
rabxfr.4
⊢ x = A → φ ↔ ψ
rabxfr.5
⊢ y = B → A = C
Assertion
rabxfr
⊢ B ∈ D → C ∈ x ∈ D | φ ↔ B ∈ y ∈ D | ψ
Proof
Step
Hyp
Ref
Expression
1
rabxfr.1
⊢ Ⅎ _ y B
2
rabxfr.2
⊢ Ⅎ _ y C
3
rabxfr.3
⊢ y ∈ D → A ∈ D
4
rabxfr.4
⊢ x = A → φ ↔ ψ
5
rabxfr.5
⊢ y = B → A = C
6
tru
⊢ ⊤
7
3
adantl
⊢ ⊤ ∧ y ∈ D → A ∈ D
8
1 2 7 4 5
rabxfrd
⊢ ⊤ ∧ B ∈ D → C ∈ x ∈ D | φ ↔ B ∈ y ∈ D | ψ
9
6 8
mpan
⊢ B ∈ D → C ∈ x ∈ D | φ ↔ B ∈ y ∈ D | ψ