Metamath Proof Explorer


Theorem rabxm

Description: Law of excluded middle, in terms of restricted class abstractions. (Contributed by Jeff Madsen, 20-Jun-2011)

Ref Expression
Assertion rabxm A = x A | φ x A | ¬ φ

Proof

Step Hyp Ref Expression
1 rabid2 A = x A | φ ¬ φ x A φ ¬ φ
2 exmidd x A φ ¬ φ
3 1 2 mprgbir A = x A | φ ¬ φ
4 unrab x A | φ x A | ¬ φ = x A | φ ¬ φ
5 3 4 eqtr4i A = x A | φ x A | ¬ φ