Metamath Proof Explorer


Theorem radcnvlem2

Description: Lemma for radcnvlt1 , radcnvle . If X is a point closer to zero than Y and the power series converges at Y , then it converges absolutely at X . (Contributed by Mario Carneiro, 26-Feb-2015)

Ref Expression
Hypotheses pser.g G = x n 0 A n x n
radcnv.a φ A : 0
psergf.x φ X
radcnvlem2.y φ Y
radcnvlem2.a φ X < Y
radcnvlem2.c φ seq 0 + G Y dom
Assertion radcnvlem2 φ seq 0 + abs G X dom

Proof

Step Hyp Ref Expression
1 pser.g G = x n 0 A n x n
2 radcnv.a φ A : 0
3 psergf.x φ X
4 radcnvlem2.y φ Y
5 radcnvlem2.a φ X < Y
6 radcnvlem2.c φ seq 0 + G Y dom
7 nn0uz 0 = 0
8 1nn0 1 0
9 8 a1i φ 1 0
10 id m = k m = k
11 2fveq3 m = k G X m = G X k
12 10 11 oveq12d m = k m G X m = k G X k
13 eqid m 0 m G X m = m 0 m G X m
14 ovex k G X k V
15 12 13 14 fvmpt k 0 m 0 m G X m k = k G X k
16 15 adantl φ k 0 m 0 m G X m k = k G X k
17 nn0re k 0 k
18 17 adantl φ k 0 k
19 1 2 3 psergf φ G X : 0
20 19 ffvelrnda φ k 0 G X k
21 20 abscld φ k 0 G X k
22 18 21 remulcld φ k 0 k G X k
23 16 22 eqeltrd φ k 0 m 0 m G X m k
24 fvco3 G X : 0 k 0 abs G X k = G X k
25 19 24 sylan φ k 0 abs G X k = G X k
26 21 recnd φ k 0 G X k
27 25 26 eqeltrd φ k 0 abs G X k
28 12 cbvmptv m 0 m G X m = k 0 k G X k
29 1 2 3 4 5 6 28 radcnvlem1 φ seq 0 + m 0 m G X m dom
30 1red φ 1
31 1red φ k 1 1
32 elnnuz k k 1
33 nnnn0 k k 0
34 32 33 sylbir k 1 k 0
35 34 18 sylan2 φ k 1 k
36 34 21 sylan2 φ k 1 G X k
37 20 absge0d φ k 0 0 G X k
38 34 37 sylan2 φ k 1 0 G X k
39 eluzle k 1 1 k
40 39 adantl φ k 1 1 k
41 31 35 36 38 40 lemul1ad φ k 1 1 G X k k G X k
42 absidm G X k G X k = G X k
43 20 42 syl φ k 0 G X k = G X k
44 25 fveq2d φ k 0 abs G X k = G X k
45 26 mulid2d φ k 0 1 G X k = G X k
46 43 44 45 3eqtr4d φ k 0 abs G X k = 1 G X k
47 34 46 sylan2 φ k 1 abs G X k = 1 G X k
48 16 oveq2d φ k 0 1 m 0 m G X m k = 1 k G X k
49 22 recnd φ k 0 k G X k
50 49 mulid2d φ k 0 1 k G X k = k G X k
51 48 50 eqtrd φ k 0 1 m 0 m G X m k = k G X k
52 34 51 sylan2 φ k 1 1 m 0 m G X m k = k G X k
53 41 47 52 3brtr4d φ k 1 abs G X k 1 m 0 m G X m k
54 7 9 23 27 29 30 53 cvgcmpce φ seq 0 + abs G X dom