Metamath Proof Explorer


Theorem radcnvlt1

Description: If X is within the open disk of radius R centered at zero, then the infinite series converges absolutely at X , and also converges when the series is multiplied by n . (Contributed by Mario Carneiro, 26-Feb-2015)

Ref Expression
Hypotheses pser.g G = x n 0 A n x n
radcnv.a φ A : 0
radcnv.r R = sup r | seq 0 + G r dom * <
radcnvlt.x φ X
radcnvlt.a φ X < R
radcnvlt1.h H = m 0 m G X m
Assertion radcnvlt1 φ seq 0 + H dom seq 0 + abs G X dom

Proof

Step Hyp Ref Expression
1 pser.g G = x n 0 A n x n
2 radcnv.a φ A : 0
3 radcnv.r R = sup r | seq 0 + G r dom * <
4 radcnvlt.x φ X
5 radcnvlt.a φ X < R
6 radcnvlt1.h H = m 0 m G X m
7 ressxr *
8 4 abscld φ X
9 7 8 sselid φ X *
10 iccssxr 0 +∞ *
11 1 2 3 radcnvcl φ R 0 +∞
12 10 11 sselid φ R *
13 xrltnle X * R * X < R ¬ R X
14 9 12 13 syl2anc φ X < R ¬ R X
15 5 14 mpbid φ ¬ R X
16 3 breq1i R X sup r | seq 0 + G r dom * < X
17 ssrab2 r | seq 0 + G r dom
18 17 7 sstri r | seq 0 + G r dom *
19 supxrleub r | seq 0 + G r dom * X * sup r | seq 0 + G r dom * < X s r | seq 0 + G r dom s X
20 18 9 19 sylancr φ sup r | seq 0 + G r dom * < X s r | seq 0 + G r dom s X
21 16 20 syl5bb φ R X s r | seq 0 + G r dom s X
22 fveq2 r = s G r = G s
23 22 seqeq3d r = s seq 0 + G r = seq 0 + G s
24 23 eleq1d r = s seq 0 + G r dom seq 0 + G s dom
25 24 ralrab s r | seq 0 + G r dom s X s seq 0 + G s dom s X
26 21 25 bitrdi φ R X s seq 0 + G s dom s X
27 15 26 mtbid φ ¬ s seq 0 + G s dom s X
28 rexanali s seq 0 + G s dom ¬ s X ¬ s seq 0 + G s dom s X
29 27 28 sylibr φ s seq 0 + G s dom ¬ s X
30 ltnle X s X < s ¬ s X
31 8 30 sylan φ s X < s ¬ s X
32 31 adantr φ s seq 0 + G s dom X < s ¬ s X
33 2 ad2antrr φ s seq 0 + G s dom X < s A : 0
34 4 ad2antrr φ s seq 0 + G s dom X < s X
35 simplr φ s seq 0 + G s dom X < s s
36 35 recnd φ s seq 0 + G s dom X < s s
37 simprr φ s seq 0 + G s dom X < s X < s
38 0red φ s seq 0 + G s dom X < s 0
39 34 abscld φ s seq 0 + G s dom X < s X
40 34 absge0d φ s seq 0 + G s dom X < s 0 X
41 38 39 35 40 37 lelttrd φ s seq 0 + G s dom X < s 0 < s
42 38 35 41 ltled φ s seq 0 + G s dom X < s 0 s
43 35 42 absidd φ s seq 0 + G s dom X < s s = s
44 37 43 breqtrrd φ s seq 0 + G s dom X < s X < s
45 simprl φ s seq 0 + G s dom X < s seq 0 + G s dom
46 1 33 34 36 44 45 6 radcnvlem1 φ s seq 0 + G s dom X < s seq 0 + H dom
47 1 33 34 36 44 45 radcnvlem2 φ s seq 0 + G s dom X < s seq 0 + abs G X dom
48 46 47 jca φ s seq 0 + G s dom X < s seq 0 + H dom seq 0 + abs G X dom
49 48 expr φ s seq 0 + G s dom X < s seq 0 + H dom seq 0 + abs G X dom
50 32 49 sylbird φ s seq 0 + G s dom ¬ s X seq 0 + H dom seq 0 + abs G X dom
51 50 expimpd φ s seq 0 + G s dom ¬ s X seq 0 + H dom seq 0 + abs G X dom
52 51 rexlimdva φ s seq 0 + G s dom ¬ s X seq 0 + H dom seq 0 + abs G X dom
53 29 52 mpd φ seq 0 + H dom seq 0 + abs G X dom