Metamath Proof Explorer


Theorem radcnvlt2

Description: If X is within the open disk of radius R centered at zero, then the infinite series converges at X . (Contributed by Mario Carneiro, 26-Feb-2015)

Ref Expression
Hypotheses pser.g G = x n 0 A n x n
radcnv.a φ A : 0
radcnv.r R = sup r | seq 0 + G r dom * <
radcnvlt.x φ X
radcnvlt.a φ X < R
Assertion radcnvlt2 φ seq 0 + G X dom

Proof

Step Hyp Ref Expression
1 pser.g G = x n 0 A n x n
2 radcnv.a φ A : 0
3 radcnv.r R = sup r | seq 0 + G r dom * <
4 radcnvlt.x φ X
5 radcnvlt.a φ X < R
6 nn0uz 0 = 0
7 0zd φ 0
8 1 2 4 psergf φ G X : 0
9 fvco3 G X : 0 k 0 abs G X k = G X k
10 8 9 sylan φ k 0 abs G X k = G X k
11 8 ffvelrnda φ k 0 G X k
12 id m = k m = k
13 2fveq3 m = k G X m = G X k
14 12 13 oveq12d m = k m G X m = k G X k
15 14 cbvmptv m 0 m G X m = k 0 k G X k
16 1 2 3 4 5 15 radcnvlt1 φ seq 0 + m 0 m G X m dom seq 0 + abs G X dom
17 16 simprd φ seq 0 + abs G X dom
18 6 7 10 11 17 abscvgcvg φ seq 0 + G X dom