Step |
Hyp |
Ref |
Expression |
1 |
|
israg.p |
|
2 |
|
israg.d |
|
3 |
|
israg.i |
|
4 |
|
israg.l |
|
5 |
|
israg.s |
|
6 |
|
israg.g |
|
7 |
|
israg.a |
|
8 |
|
israg.b |
|
9 |
|
israg.c |
|
10 |
|
ragcgr.c |
|
11 |
|
ragcgr.d |
|
12 |
|
ragcgr.e |
|
13 |
|
ragcgr.f |
|
14 |
|
ragcgr.1 |
|
15 |
|
ragcgr.2 |
|
16 |
|
eqidd |
|
17 |
6
|
adantr |
|
18 |
8
|
adantr |
|
19 |
9
|
adantr |
|
20 |
12
|
adantr |
|
21 |
13
|
adantr |
|
22 |
7
|
adantr |
|
23 |
11
|
adantr |
|
24 |
15
|
adantr |
|
25 |
1 2 3 10 17 22 18 19 23 20 21 24
|
cgr3simp2 |
|
26 |
|
simpr |
|
27 |
1 2 3 17 18 19 20 21 25 26
|
tgcgreq |
|
28 |
|
eqidd |
|
29 |
16 27 28
|
s3eqd |
|
30 |
1 2 3 4 5 17 23 21 20
|
ragtrivb |
|
31 |
29 30
|
eqeltrd |
|
32 |
14
|
adantr |
|
33 |
6
|
adantr |
|
34 |
7
|
adantr |
|
35 |
8
|
adantr |
|
36 |
9
|
adantr |
|
37 |
1 2 3 4 5 33 34 35 36
|
israg |
|
38 |
32 37
|
mpbid |
|
39 |
13
|
adantr |
|
40 |
11
|
adantr |
|
41 |
12
|
adantr |
|
42 |
15
|
adantr |
|
43 |
1 2 3 10 33 34 35 36 40 41 39 42
|
cgr3simp3 |
|
44 |
1 2 3 33 36 34 39 40 43
|
tgcgrcomlr |
|
45 |
|
eqid |
|
46 |
1 2 3 4 5 33 35 45 36
|
mircl |
|
47 |
|
eqid |
|
48 |
1 2 3 4 5 33 41 47 39
|
mircl |
|
49 |
|
simpr |
|
50 |
49
|
necomd |
|
51 |
1 2 3 4 5 33 35 45 36
|
mirbtwn |
|
52 |
1 2 3 33 46 35 36 51
|
tgbtwncom |
|
53 |
1 2 3 4 5 33 41 47 39
|
mirbtwn |
|
54 |
1 2 3 33 48 41 39 53
|
tgbtwncom |
|
55 |
1 2 3 10 33 34 35 36 40 41 39 42
|
cgr3simp2 |
|
56 |
1 2 3 33 35 36 41 39 55
|
tgcgrcomlr |
|
57 |
1 2 3 4 5 33 35 45 36
|
mircgr |
|
58 |
1 2 3 4 5 33 41 47 39
|
mircgr |
|
59 |
55 57 58
|
3eqtr4d |
|
60 |
1 2 3 10 33 34 35 36 40 41 39 42
|
cgr3simp1 |
|
61 |
1 2 3 33 34 35 40 41 60
|
tgcgrcomlr |
|
62 |
1 2 3 33 36 35 46 39 41 48 34 40 50 52 54 56 59 43 61
|
axtg5seg |
|
63 |
1 2 3 33 46 34 48 40 62
|
tgcgrcomlr |
|
64 |
38 44 63
|
3eqtr3d |
|
65 |
1 2 3 4 5 33 40 41 39
|
israg |
|
66 |
64 65
|
mpbird |
|
67 |
31 66
|
pm2.61dane |
|