Metamath Proof Explorer


Theorem ragcgr

Description: Right angle and colinearity. Theorem 8.10 of Schwabhauser p. 58. (Contributed by Thierry Arnoux, 4-Sep-2019)

Ref Expression
Hypotheses israg.p P = Base G
israg.d - ˙ = dist G
israg.i I = Itv G
israg.l L = Line 𝒢 G
israg.s S = pInv 𝒢 G
israg.g φ G 𝒢 Tarski
israg.a φ A P
israg.b φ B P
israg.c φ C P
ragcgr.c ˙ = 𝒢 G
ragcgr.d φ D P
ragcgr.e φ E P
ragcgr.f φ F P
ragcgr.1 φ ⟨“ ABC ”⟩ 𝒢 G
ragcgr.2 φ ⟨“ ABC ”⟩ ˙ ⟨“ DEF ”⟩
Assertion ragcgr φ ⟨“ DEF ”⟩ 𝒢 G

Proof

Step Hyp Ref Expression
1 israg.p P = Base G
2 israg.d - ˙ = dist G
3 israg.i I = Itv G
4 israg.l L = Line 𝒢 G
5 israg.s S = pInv 𝒢 G
6 israg.g φ G 𝒢 Tarski
7 israg.a φ A P
8 israg.b φ B P
9 israg.c φ C P
10 ragcgr.c ˙ = 𝒢 G
11 ragcgr.d φ D P
12 ragcgr.e φ E P
13 ragcgr.f φ F P
14 ragcgr.1 φ ⟨“ ABC ”⟩ 𝒢 G
15 ragcgr.2 φ ⟨“ ABC ”⟩ ˙ ⟨“ DEF ”⟩
16 eqidd φ B = C D = D
17 6 adantr φ B = C G 𝒢 Tarski
18 8 adantr φ B = C B P
19 9 adantr φ B = C C P
20 12 adantr φ B = C E P
21 13 adantr φ B = C F P
22 7 adantr φ B = C A P
23 11 adantr φ B = C D P
24 15 adantr φ B = C ⟨“ ABC ”⟩ ˙ ⟨“ DEF ”⟩
25 1 2 3 10 17 22 18 19 23 20 21 24 cgr3simp2 φ B = C B - ˙ C = E - ˙ F
26 simpr φ B = C B = C
27 1 2 3 17 18 19 20 21 25 26 tgcgreq φ B = C E = F
28 eqidd φ B = C F = F
29 16 27 28 s3eqd φ B = C ⟨“ DEF ”⟩ = ⟨“ DFF ”⟩
30 1 2 3 4 5 17 23 21 20 ragtrivb φ B = C ⟨“ DFF ”⟩ 𝒢 G
31 29 30 eqeltrd φ B = C ⟨“ DEF ”⟩ 𝒢 G
32 14 adantr φ B C ⟨“ ABC ”⟩ 𝒢 G
33 6 adantr φ B C G 𝒢 Tarski
34 7 adantr φ B C A P
35 8 adantr φ B C B P
36 9 adantr φ B C C P
37 1 2 3 4 5 33 34 35 36 israg φ B C ⟨“ ABC ”⟩ 𝒢 G A - ˙ C = A - ˙ S B C
38 32 37 mpbid φ B C A - ˙ C = A - ˙ S B C
39 13 adantr φ B C F P
40 11 adantr φ B C D P
41 12 adantr φ B C E P
42 15 adantr φ B C ⟨“ ABC ”⟩ ˙ ⟨“ DEF ”⟩
43 1 2 3 10 33 34 35 36 40 41 39 42 cgr3simp3 φ B C C - ˙ A = F - ˙ D
44 1 2 3 33 36 34 39 40 43 tgcgrcomlr φ B C A - ˙ C = D - ˙ F
45 eqid S B = S B
46 1 2 3 4 5 33 35 45 36 mircl φ B C S B C P
47 eqid S E = S E
48 1 2 3 4 5 33 41 47 39 mircl φ B C S E F P
49 simpr φ B C B C
50 49 necomd φ B C C B
51 1 2 3 4 5 33 35 45 36 mirbtwn φ B C B S B C I C
52 1 2 3 33 46 35 36 51 tgbtwncom φ B C B C I S B C
53 1 2 3 4 5 33 41 47 39 mirbtwn φ B C E S E F I F
54 1 2 3 33 48 41 39 53 tgbtwncom φ B C E F I S E F
55 1 2 3 10 33 34 35 36 40 41 39 42 cgr3simp2 φ B C B - ˙ C = E - ˙ F
56 1 2 3 33 35 36 41 39 55 tgcgrcomlr φ B C C - ˙ B = F - ˙ E
57 1 2 3 4 5 33 35 45 36 mircgr φ B C B - ˙ S B C = B - ˙ C
58 1 2 3 4 5 33 41 47 39 mircgr φ B C E - ˙ S E F = E - ˙ F
59 55 57 58 3eqtr4d φ B C B - ˙ S B C = E - ˙ S E F
60 1 2 3 10 33 34 35 36 40 41 39 42 cgr3simp1 φ B C A - ˙ B = D - ˙ E
61 1 2 3 33 34 35 40 41 60 tgcgrcomlr φ B C B - ˙ A = E - ˙ D
62 1 2 3 33 36 35 46 39 41 48 34 40 50 52 54 56 59 43 61 axtg5seg φ B C S B C - ˙ A = S E F - ˙ D
63 1 2 3 33 46 34 48 40 62 tgcgrcomlr φ B C A - ˙ S B C = D - ˙ S E F
64 38 44 63 3eqtr3d φ B C D - ˙ F = D - ˙ S E F
65 1 2 3 4 5 33 40 41 39 israg φ B C ⟨“ DEF ”⟩ 𝒢 G D - ˙ F = D - ˙ S E F
66 64 65 mpbird φ B C ⟨“ DEF ”⟩ 𝒢 G
67 31 66 pm2.61dane φ ⟨“ DEF ”⟩ 𝒢 G