Metamath Proof Explorer


Theorem ragcol

Description: The right angle property is independent of the choice of point on one side. Theorem 8.3 of Schwabhauser p. 58. (Contributed by Thierry Arnoux, 25-Aug-2019)

Ref Expression
Hypotheses israg.p P = Base G
israg.d - ˙ = dist G
israg.i I = Itv G
israg.l L = Line 𝒢 G
israg.s S = pInv 𝒢 G
israg.g φ G 𝒢 Tarski
israg.a φ A P
israg.b φ B P
israg.c φ C P
ragcol.d φ D P
ragcol.1 φ ⟨“ ABC ”⟩ 𝒢 G
ragcol.2 φ A B
ragcol.3 φ A B L D B = D
Assertion ragcol φ ⟨“ DBC ”⟩ 𝒢 G

Proof

Step Hyp Ref Expression
1 israg.p P = Base G
2 israg.d - ˙ = dist G
3 israg.i I = Itv G
4 israg.l L = Line 𝒢 G
5 israg.s S = pInv 𝒢 G
6 israg.g φ G 𝒢 Tarski
7 israg.a φ A P
8 israg.b φ B P
9 israg.c φ C P
10 ragcol.d φ D P
11 ragcol.1 φ ⟨“ ABC ”⟩ 𝒢 G
12 ragcol.2 φ A B
13 ragcol.3 φ A B L D B = D
14 eqid 𝒢 G = 𝒢 G
15 eqid S B = S B
16 1 2 3 4 5 6 8 15 9 mircl φ S B C P
17 12 necomd φ B A
18 1 2 3 4 5 6 8 15 9 mircgr φ B - ˙ S B C = B - ˙ C
19 18 eqcomd φ B - ˙ C = B - ˙ S B C
20 1 2 3 4 5 6 7 8 9 israg φ ⟨“ ABC ”⟩ 𝒢 G A - ˙ C = A - ˙ S B C
21 11 20 mpbid φ A - ˙ C = A - ˙ S B C
22 1 4 3 6 8 7 10 14 9 16 2 17 13 19 21 lncgr φ D - ˙ C = D - ˙ S B C
23 1 2 3 4 5 6 10 8 9 israg φ ⟨“ DBC ”⟩ 𝒢 G D - ˙ C = D - ˙ S B C
24 22 23 mpbird φ ⟨“ DBC ”⟩ 𝒢 G