Metamath Proof Explorer


Theorem ragcom

Description: Commutative rule for right angles. Theorem 8.2 of Schwabhauser p. 57. (Contributed by Thierry Arnoux, 25-Aug-2019)

Ref Expression
Hypotheses israg.p P = Base G
israg.d - ˙ = dist G
israg.i I = Itv G
israg.l L = Line 𝒢 G
israg.s S = pInv 𝒢 G
israg.g φ G 𝒢 Tarski
israg.a φ A P
israg.b φ B P
israg.c φ C P
ragcom.1 φ ⟨“ ABC ”⟩ 𝒢 G
Assertion ragcom φ ⟨“ CBA ”⟩ 𝒢 G

Proof

Step Hyp Ref Expression
1 israg.p P = Base G
2 israg.d - ˙ = dist G
3 israg.i I = Itv G
4 israg.l L = Line 𝒢 G
5 israg.s S = pInv 𝒢 G
6 israg.g φ G 𝒢 Tarski
7 israg.a φ A P
8 israg.b φ B P
9 israg.c φ C P
10 ragcom.1 φ ⟨“ ABC ”⟩ 𝒢 G
11 eqid S B = S B
12 1 2 3 4 5 6 8 11 9 mircl φ S B C P
13 1 2 3 4 5 6 7 8 9 israg φ ⟨“ ABC ”⟩ 𝒢 G A - ˙ C = A - ˙ S B C
14 10 13 mpbid φ A - ˙ C = A - ˙ S B C
15 1 2 3 6 7 9 7 12 14 tgcgrcomlr φ C - ˙ A = S B C - ˙ A
16 1 2 3 4 5 6 8 11 12 7 miriso φ S B S B C - ˙ S B A = S B C - ˙ A
17 1 2 3 4 5 6 8 11 9 mirmir φ S B S B C = C
18 17 oveq1d φ S B S B C - ˙ S B A = C - ˙ S B A
19 15 16 18 3eqtr2d φ C - ˙ A = C - ˙ S B A
20 1 2 3 4 5 6 9 8 7 israg φ ⟨“ CBA ”⟩ 𝒢 G C - ˙ A = C - ˙ S B A
21 19 20 mpbird φ ⟨“ CBA ”⟩ 𝒢 G