Metamath Proof Explorer


Theorem ragflat3

Description: Right angle and colinearity. Theorem 8.9 of Schwabhauser p. 58. (Contributed by Thierry Arnoux, 4-Sep-2019)

Ref Expression
Hypotheses israg.p P = Base G
israg.d - ˙ = dist G
israg.i I = Itv G
israg.l L = Line 𝒢 G
israg.s S = pInv 𝒢 G
israg.g φ G 𝒢 Tarski
israg.a φ A P
israg.b φ B P
israg.c φ C P
ragflat3.1 φ ⟨“ ABC ”⟩ 𝒢 G
ragflat3.2 φ C A L B A = B
Assertion ragflat3 φ A = B C = B

Proof

Step Hyp Ref Expression
1 israg.p P = Base G
2 israg.d - ˙ = dist G
3 israg.i I = Itv G
4 israg.l L = Line 𝒢 G
5 israg.s S = pInv 𝒢 G
6 israg.g φ G 𝒢 Tarski
7 israg.a φ A P
8 israg.b φ B P
9 israg.c φ C P
10 ragflat3.1 φ ⟨“ ABC ”⟩ 𝒢 G
11 ragflat3.2 φ C A L B A = B
12 6 adantr φ ¬ A = B G 𝒢 Tarski
13 9 adantr φ ¬ A = B C P
14 8 adantr φ ¬ A = B B P
15 7 adantr φ ¬ A = B A P
16 10 adantr φ ¬ A = B ⟨“ ABC ”⟩ 𝒢 G
17 simpr φ ¬ A = B ¬ A = B
18 17 neqned φ ¬ A = B A B
19 11 adantr φ ¬ A = B C A L B A = B
20 1 4 3 12 15 14 13 19 colrot1 φ ¬ A = B A B L C B = C
21 1 2 3 4 5 12 15 14 13 13 16 18 20 ragcol φ ¬ A = B ⟨“ CBC ”⟩ 𝒢 G
22 1 2 3 4 5 12 13 14 15 21 ragtriva φ ¬ A = B C = B
23 22 ex φ ¬ A = B C = B
24 23 orrd φ A = B C = B