Metamath Proof Explorer


Theorem ragperp

Description: Deduce that two lines are perpendicular from a right angle statement. One direction of theorem 8.13 of Schwabhauser p. 59. (Contributed by Thierry Arnoux, 20-Oct-2019)

Ref Expression
Hypotheses isperp.p P = Base G
isperp.d - ˙ = dist G
isperp.i I = Itv G
isperp.l L = Line 𝒢 G
isperp.g φ G 𝒢 Tarski
isperp.a φ A ran L
ragperp.b φ B ran L
ragperp.x φ X A B
ragperp.u φ U A
ragperp.v φ V B
ragperp.1 φ U X
ragperp.2 φ V X
ragperp.r φ ⟨“ UXV ”⟩ 𝒢 G
Assertion ragperp φ A 𝒢 G B

Proof

Step Hyp Ref Expression
1 isperp.p P = Base G
2 isperp.d - ˙ = dist G
3 isperp.i I = Itv G
4 isperp.l L = Line 𝒢 G
5 isperp.g φ G 𝒢 Tarski
6 isperp.a φ A ran L
7 ragperp.b φ B ran L
8 ragperp.x φ X A B
9 ragperp.u φ U A
10 ragperp.v φ V B
11 ragperp.1 φ U X
12 ragperp.2 φ V X
13 ragperp.r φ ⟨“ UXV ”⟩ 𝒢 G
14 eqid pInv 𝒢 G = pInv 𝒢 G
15 5 adantr φ u A v B G 𝒢 Tarski
16 7 adantr φ u A v B B ran L
17 simprr φ u A v B v B
18 1 4 3 15 16 17 tglnpt φ u A v B v P
19 6 adantr φ u A v B A ran L
20 8 elin1d φ X A
21 20 adantr φ u A v B X A
22 1 4 3 15 19 21 tglnpt φ u A v B X P
23 simprl φ u A v B u A
24 1 4 3 15 19 23 tglnpt φ u A v B u P
25 10 adantr φ u A v B V B
26 1 4 3 15 16 25 tglnpt φ u A v B V P
27 9 adantr φ u A v B U A
28 1 4 3 15 19 27 tglnpt φ u A v B U P
29 13 adantr φ u A v B ⟨“ UXV ”⟩ 𝒢 G
30 11 adantr φ u A v B U X
31 9 ad2antrr φ u A v B ¬ X = u U A
32 5 ad2antrr φ u A v B ¬ X = u G 𝒢 Tarski
33 22 adantr φ u A v B ¬ X = u X P
34 24 adantr φ u A v B ¬ X = u u P
35 simpr φ u A v B ¬ X = u ¬ X = u
36 35 neqned φ u A v B ¬ X = u X u
37 6 ad2antrr φ u A v B ¬ X = u A ran L
38 20 ad2antrr φ u A v B ¬ X = u X A
39 23 adantr φ u A v B ¬ X = u u A
40 1 3 4 32 33 34 36 36 37 38 39 tglinethru φ u A v B ¬ X = u A = X L u
41 31 40 eleqtrd φ u A v B ¬ X = u U X L u
42 41 ex φ u A v B ¬ X = u U X L u
43 42 orrd φ u A v B X = u U X L u
44 43 orcomd φ u A v B U X L u X = u
45 1 2 3 4 14 15 28 22 26 24 29 30 44 ragcol φ u A v B ⟨“ uXV ”⟩ 𝒢 G
46 1 2 3 4 14 15 24 22 26 45 ragcom φ u A v B ⟨“ VXu ”⟩ 𝒢 G
47 12 adantr φ u A v B V X
48 10 ad2antrr φ u A v B ¬ X = v V B
49 5 ad2antrr φ u A v B ¬ X = v G 𝒢 Tarski
50 22 adantr φ u A v B ¬ X = v X P
51 18 adantr φ u A v B ¬ X = v v P
52 simpr φ u A v B ¬ X = v ¬ X = v
53 52 neqned φ u A v B ¬ X = v X v
54 7 ad2antrr φ u A v B ¬ X = v B ran L
55 8 elin2d φ X B
56 55 ad2antrr φ u A v B ¬ X = v X B
57 17 adantr φ u A v B ¬ X = v v B
58 1 3 4 49 50 51 53 53 54 56 57 tglinethru φ u A v B ¬ X = v B = X L v
59 48 58 eleqtrd φ u A v B ¬ X = v V X L v
60 59 ex φ u A v B ¬ X = v V X L v
61 60 orrd φ u A v B X = v V X L v
62 61 orcomd φ u A v B V X L v X = v
63 1 2 3 4 14 15 26 22 24 18 46 47 62 ragcol φ u A v B ⟨“ vXu ”⟩ 𝒢 G
64 1 2 3 4 14 15 18 22 24 63 ragcom φ u A v B ⟨“ uXv ”⟩ 𝒢 G
65 64 ralrimivva φ u A v B ⟨“ uXv ”⟩ 𝒢 G
66 1 2 3 4 5 6 7 8 isperp2 φ A 𝒢 G B u A v B ⟨“ uXv ”⟩ 𝒢 G
67 65 66 mpbird φ A 𝒢 G B