Metamath Proof Explorer


Theorem ragtriva

Description: Trivial right angle. Theorem 8.8 of Schwabhauser p. 58. (Contributed by Thierry Arnoux, 3-Sep-2019)

Ref Expression
Hypotheses israg.p P = Base G
israg.d - ˙ = dist G
israg.i I = Itv G
israg.l L = Line 𝒢 G
israg.s S = pInv 𝒢 G
israg.g φ G 𝒢 Tarski
israg.a φ A P
israg.b φ B P
israg.c φ C P
ragtriva.1 φ ⟨“ ABA ”⟩ 𝒢 G
Assertion ragtriva φ A = B

Proof

Step Hyp Ref Expression
1 israg.p P = Base G
2 israg.d - ˙ = dist G
3 israg.i I = Itv G
4 israg.l L = Line 𝒢 G
5 israg.s S = pInv 𝒢 G
6 israg.g φ G 𝒢 Tarski
7 israg.a φ A P
8 israg.b φ B P
9 israg.c φ C P
10 ragtriva.1 φ ⟨“ ABA ”⟩ 𝒢 G
11 1 2 3 4 5 6 8 7 9 ragtrivb φ ⟨“ BAA ”⟩ 𝒢 G
12 1 2 3 4 5 6 8 7 7 11 ragcom φ ⟨“ AAB ”⟩ 𝒢 G
13 1 2 3 4 5 6 7 7 8 12 10 ragflat φ A = B