Metamath Proof Explorer


Theorem ragtrivb

Description: Trivial right angle. Theorem 8.5 of Schwabhauser p. 58. (Contributed by Thierry Arnoux, 25-Aug-2019)

Ref Expression
Hypotheses israg.p P = Base G
israg.d - ˙ = dist G
israg.i I = Itv G
israg.l L = Line 𝒢 G
israg.s S = pInv 𝒢 G
israg.g φ G 𝒢 Tarski
israg.a φ A P
israg.b φ B P
israg.c φ C P
Assertion ragtrivb φ ⟨“ ABB ”⟩ 𝒢 G

Proof

Step Hyp Ref Expression
1 israg.p P = Base G
2 israg.d - ˙ = dist G
3 israg.i I = Itv G
4 israg.l L = Line 𝒢 G
5 israg.s S = pInv 𝒢 G
6 israg.g φ G 𝒢 Tarski
7 israg.a φ A P
8 israg.b φ B P
9 israg.c φ C P
10 eqid S B = S B
11 1 2 3 4 5 6 8 10 mircinv φ S B B = B
12 11 oveq2d φ A - ˙ S B B = A - ˙ B
13 12 eqcomd φ A - ˙ B = A - ˙ S B B
14 1 2 3 4 5 6 7 8 8 israg φ ⟨“ ABB ”⟩ 𝒢 G A - ˙ B = A - ˙ S B B
15 13 14 mpbird φ ⟨“ ABB ”⟩ 𝒢 G