Metamath Proof Explorer


Theorem ral2imi

Description: Inference quantifying antecedent, nested antecedent, and consequent, with a strong hypothesis. (Contributed by NM, 19-Dec-2006) Allow shortening of ralim . (Revised by Wolf Lammen, 1-Dec-2019)

Ref Expression
Hypothesis ral2imi.1 φ ψ χ
Assertion ral2imi x A φ x A ψ x A χ

Proof

Step Hyp Ref Expression
1 ral2imi.1 φ ψ χ
2 df-ral x A φ x x A φ
3 1 imim3i x A φ x A ψ x A χ
4 3 al2imi x x A φ x x A ψ x x A χ
5 df-ral x A ψ x x A ψ
6 df-ral x A χ x x A χ
7 4 5 6 3imtr4g x x A φ x A ψ x A χ
8 2 7 sylbi x A φ x A ψ x A χ