Metamath Proof Explorer


Theorem ralabOLD

Description: Obsolete version of ralab as of 2-Nov-2024. (Contributed by Jeff Madsen, 10-Jun-2010) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis ralab.1 y = x φ ψ
Assertion ralabOLD x y | φ χ x ψ χ

Proof

Step Hyp Ref Expression
1 ralab.1 y = x φ ψ
2 df-ral x y | φ χ x x y | φ χ
3 vex x V
4 3 1 elab x y | φ ψ
5 4 imbi1i x y | φ χ ψ χ
6 5 albii x x y | φ χ x ψ χ
7 2 6 bitri x y | φ χ x ψ χ