Metamath Proof Explorer


Theorem ralanid

Description: Cancellation law for restricted universal quantification. (Contributed by Peter Mazsa, 30-Dec-2018) (Proof shortened by Wolf Lammen, 29-Jun-2023)

Ref Expression
Assertion ralanid x A x A φ x A φ

Proof

Step Hyp Ref Expression
1 ibar x A φ x A φ
2 1 bicomd x A x A φ φ
3 2 ralbiia x A x A φ x A φ