Metamath Proof Explorer


Theorem ralbi

Description: Distribute a restricted universal quantifier over a biconditional. Restricted quantification version of albi . (Contributed by NM, 6-Oct-2003) Reduce axiom usage. (Revised by Wolf Lammen, 17-Jun-2023)

Ref Expression
Assertion ralbi x A φ ψ x A φ x A ψ

Proof

Step Hyp Ref Expression
1 biimp φ ψ φ ψ
2 1 ral2imi x A φ ψ x A φ x A ψ
3 biimpr φ ψ ψ φ
4 3 ral2imi x A φ ψ x A ψ x A φ
5 2 4 impbid x A φ ψ x A φ x A ψ