Metamath Proof Explorer


Theorem ralbida

Description: Formula-building rule for restricted universal quantifier (deduction form). (Contributed by NM, 6-Oct-2003) (Proof shortened by Wolf Lammen, 31-Oct-2024)

Ref Expression
Hypotheses ralbida.1 x φ
ralbida.2 φ x A ψ χ
Assertion ralbida φ x A ψ x A χ

Proof

Step Hyp Ref Expression
1 ralbida.1 x φ
2 ralbida.2 φ x A ψ χ
3 2 biimpd φ x A ψ χ
4 1 3 ralimdaa φ x A ψ x A χ
5 2 biimprd φ x A χ ψ
6 1 5 ralimdaa φ x A χ x A ψ
7 4 6 impbid φ x A ψ x A χ