Metamath Proof Explorer


Theorem ralbidv2

Description: Formula-building rule for restricted universal quantifier (deduction form). (Contributed by NM, 6-Apr-1997)

Ref Expression
Hypothesis ralbidv2.1 φ x A ψ x B χ
Assertion ralbidv2 φ x A ψ x B χ

Proof

Step Hyp Ref Expression
1 ralbidv2.1 φ x A ψ x B χ
2 1 albidv φ x x A ψ x x B χ
3 df-ral x A ψ x x A ψ
4 df-ral x B χ x x B χ
5 2 3 4 3bitr4g φ x A ψ x B χ