Metamath Proof Explorer


Theorem ralbidva

Description: Formula-building rule for restricted universal quantifier (deduction form). (Contributed by NM, 4-Mar-1997) Reduce dependencies on axioms. (Revised by Wolf Lammen, 29-Dec-2019)

Ref Expression
Hypothesis ralbidva.1 φ x A ψ χ
Assertion ralbidva φ x A ψ x A χ

Proof

Step Hyp Ref Expression
1 ralbidva.1 φ x A ψ χ
2 1 pm5.74da φ x A ψ x A χ
3 2 ralbidv2 φ x A ψ x A χ