Metamath Proof Explorer


Theorem ralbii2

Description: Inference adding different restricted universal quantifiers to each side of an equivalence. (Contributed by NM, 15-Aug-2005)

Ref Expression
Hypothesis ralbii2.1 x A φ x B ψ
Assertion ralbii2 x A φ x B ψ

Proof

Step Hyp Ref Expression
1 ralbii2.1 x A φ x B ψ
2 1 albii x x A φ x x B ψ
3 df-ral x A φ x x A φ
4 df-ral x B ψ x x B ψ
5 2 3 4 3bitr4i x A φ x B ψ