Metamath Proof Explorer
Description: Inference adding restricted universal quantifier to both sides of an
equivalence. (Contributed by NM, 26-Nov-2000)
|
|
Ref |
Expression |
|
Hypothesis |
ralbiia.1 |
|
|
Assertion |
ralbiia |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
ralbiia.1 |
|
2 |
1
|
pm5.74i |
|
3 |
2
|
ralbii2 |
|