Metamath Proof Explorer


Theorem ralbiia

Description: Inference adding restricted universal quantifier to both sides of an equivalence. (Contributed by NM, 26-Nov-2000)

Ref Expression
Hypothesis ralbiia.1 x A φ ψ
Assertion ralbiia x A φ x A ψ

Proof

Step Hyp Ref Expression
1 ralbiia.1 x A φ ψ
2 1 pm5.74i x A φ x A ψ
3 2 ralbii2 x A φ x A ψ