Metamath Proof Explorer


Theorem ralbiim

Description: Split a biconditional and distribute quantifier. Restricted quantifier version of albiim . (Contributed by NM, 3-Jun-2012)

Ref Expression
Assertion ralbiim x A φ ψ x A φ ψ x A ψ φ

Proof

Step Hyp Ref Expression
1 dfbi2 φ ψ φ ψ ψ φ
2 1 ralbii x A φ ψ x A φ ψ ψ φ
3 r19.26 x A φ ψ ψ φ x A φ ψ x A ψ φ
4 2 3 bitri x A φ ψ x A φ ψ x A ψ φ