Metamath Proof Explorer


Theorem ralcom13

Description: Swap first and third restricted universal quantifiers. (Contributed by AV, 3-Dec-2021) (Proof shortened by Wolf Lammen, 2-Jan-2025)

Ref Expression
Assertion ralcom13 x A y B z C φ z C y B x A φ

Proof

Step Hyp Ref Expression
1 ralrot3 x A y B z C φ z C x A y B φ
2 ralcom x A y B φ y B x A φ
3 2 ralbii z C x A y B φ z C y B x A φ
4 1 3 bitri x A y B z C φ z C y B x A φ