Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Restricted quantification
ralcom13
Next ⟩
rexcom13
Metamath Proof Explorer
Ascii
Unicode
Theorem
ralcom13
Description:
Swap first and third restricted universal quantifiers.
(Contributed by
AV
, 3-Dec-2021)
Ref
Expression
Assertion
ralcom13
⊢
∀
x
∈
A
∀
y
∈
B
∀
z
∈
C
φ
↔
∀
z
∈
C
∀
y
∈
B
∀
x
∈
A
φ
Proof
Step
Hyp
Ref
Expression
1
ralcom
⊢
∀
x
∈
A
∀
y
∈
B
∀
z
∈
C
φ
↔
∀
y
∈
B
∀
x
∈
A
∀
z
∈
C
φ
2
ralcom
⊢
∀
x
∈
A
∀
z
∈
C
φ
↔
∀
z
∈
C
∀
x
∈
A
φ
3
2
ralbii
⊢
∀
y
∈
B
∀
x
∈
A
∀
z
∈
C
φ
↔
∀
y
∈
B
∀
z
∈
C
∀
x
∈
A
φ
4
ralcom
⊢
∀
y
∈
B
∀
z
∈
C
∀
x
∈
A
φ
↔
∀
z
∈
C
∀
y
∈
B
∀
x
∈
A
φ
5
1
3
4
3bitri
⊢
∀
x
∈
A
∀
y
∈
B
∀
z
∈
C
φ
↔
∀
z
∈
C
∀
y
∈
B
∀
x
∈
A
φ