Metamath Proof Explorer


Theorem ralcom4

Description: Commutation of restricted and unrestricted universal quantifiers. (Contributed by NM, 26-Mar-2004) (Proof shortened by Andrew Salmon, 8-Jun-2011) Reduce axiom dependencies. (Revised by BJ, 13-Jun-2019) (Proof shortened by Wolf Lammen, 31-Oct-2024)

Ref Expression
Assertion ralcom4 x A y φ y x A φ

Proof

Step Hyp Ref Expression
1 19.21v y x A φ x A y φ
2 1 albii x y x A φ x x A y φ
3 alcom y x x A φ x y x A φ
4 df-ral x A y φ x x A y φ
5 2 3 4 3bitr4ri x A y φ y x x A φ
6 df-ral x A φ x x A φ
7 6 albii y x A φ y x x A φ
8 5 7 bitr4i x A y φ y x A φ