Metamath Proof Explorer


Theorem ralcom4OLD

Description: Obsolete version of ralcom4 as of 31-Oct-2024. (Contributed by NM, 26-Mar-2004) (Proof shortened by Andrew Salmon, 8-Jun-2011) Reduce axiom dependencies. (Revised by BJ, 13-Jun-2019) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Assertion ralcom4OLD x A y φ y x A φ

Proof

Step Hyp Ref Expression
1 19.21v y x A φ x A y φ
2 1 bicomi x A y φ y x A φ
3 2 albii x x A y φ x y x A φ
4 alcom x y x A φ y x x A φ
5 3 4 bitri x x A y φ y x x A φ
6 df-ral x A y φ x x A y φ
7 df-ral x A φ x x A φ
8 7 albii y x A φ y x x A φ
9 5 6 8 3bitr4i x A y φ y x A φ