Metamath Proof Explorer


Theorem raldifb

Description: Restricted universal quantification on a class difference in terms of an implication. (Contributed by Alexander van der Vekens, 3-Jan-2018)

Ref Expression
Assertion raldifb x A x B φ x A B φ

Proof

Step Hyp Ref Expression
1 impexp x A x B φ x A x B φ
2 df-nel x B ¬ x B
3 2 anbi2i x A x B x A ¬ x B
4 eldif x A B x A ¬ x B
5 3 4 bitr4i x A x B x A B
6 5 imbi1i x A x B φ x A B φ
7 1 6 bitr3i x A x B φ x A B φ
8 7 ralbii2 x A x B φ x A B φ