Metamath Proof Explorer


Theorem raldifeq

Description: Equality theorem for restricted universal quantifier. (Contributed by Thierry Arnoux, 6-Jul-2019)

Ref Expression
Hypotheses raldifeq.1 φ A B
raldifeq.2 φ x B A ψ
Assertion raldifeq φ x A ψ x B ψ

Proof

Step Hyp Ref Expression
1 raldifeq.1 φ A B
2 raldifeq.2 φ x B A ψ
3 2 biantrud φ x A ψ x A ψ x B A ψ
4 ralunb x A B A ψ x A ψ x B A ψ
5 3 4 bitr4di φ x A ψ x A B A ψ
6 undif A B A B A = B
7 1 6 sylib φ A B A = B
8 7 raleqdv φ x A B A ψ x B ψ
9 5 8 bitrd φ x A ψ x B ψ