Metamath Proof Explorer


Theorem raldifsni

Description: Rearrangement of a property of a singleton difference. (Contributed by Stefan O'Rear, 27-Feb-2015)

Ref Expression
Assertion raldifsni x A B ¬ φ x A φ x = B

Proof

Step Hyp Ref Expression
1 eldifsn x A B x A x B
2 1 imbi1i x A B ¬ φ x A x B ¬ φ
3 impexp x A x B ¬ φ x A x B ¬ φ
4 df-ne x B ¬ x = B
5 4 imbi1i x B ¬ φ ¬ x = B ¬ φ
6 con34b φ x = B ¬ x = B ¬ φ
7 5 6 bitr4i x B ¬ φ φ x = B
8 7 imbi2i x A x B ¬ φ x A φ x = B
9 2 3 8 3bitri x A B ¬ φ x A φ x = B
10 9 ralbii2 x A B ¬ φ x A φ x = B