Description: Equality deduction for restricted universal quantifier. See raleqbidv for a version based on fewer axioms. (Contributed by Thierry Arnoux, 8-Mar-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | raleqbid.0 | ||
| raleqbid.1 | |||
| raleqbid.2 | |||
| raleqbid.3 | |||
| raleqbid.4 | |||
| Assertion | raleqbid |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | raleqbid.0 | ||
| 2 | raleqbid.1 | ||
| 3 | raleqbid.2 | ||
| 4 | raleqbid.3 | ||
| 5 | raleqbid.4 | ||
| 6 | 2 3 | raleqf | |
| 7 | 4 6 | syl | |
| 8 | 1 5 | ralbid | |
| 9 | 7 8 | bitrd |