Description: Equality deduction for restricted universal quantifier. (Contributed by Thierry Arnoux, 8-Mar-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | raleqbid.0 | ||
raleqbid.1 | |||
raleqbid.2 | |||
raleqbid.3 | |||
raleqbid.4 | |||
Assertion | raleqbid |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | raleqbid.0 | ||
2 | raleqbid.1 | ||
3 | raleqbid.2 | ||
4 | raleqbid.3 | ||
5 | raleqbid.4 | ||
6 | 2 3 | raleqf | |
7 | 4 6 | syl | |
8 | 1 5 | ralbid | |
9 | 7 8 | bitrd |