Metamath Proof Explorer


Theorem raleqbid

Description: Equality deduction for restricted universal quantifier. (Contributed by Thierry Arnoux, 8-Mar-2017)

Ref Expression
Hypotheses raleqbid.0 x φ
raleqbid.1 _ x A
raleqbid.2 _ x B
raleqbid.3 φ A = B
raleqbid.4 φ ψ χ
Assertion raleqbid φ x A ψ x B χ

Proof

Step Hyp Ref Expression
1 raleqbid.0 x φ
2 raleqbid.1 _ x A
3 raleqbid.2 _ x B
4 raleqbid.3 φ A = B
5 raleqbid.4 φ ψ χ
6 2 3 raleqf A = B x A ψ x B ψ
7 4 6 syl φ x A ψ x B ψ
8 1 5 ralbid φ x B ψ x B χ
9 7 8 bitrd φ x A ψ x B χ