Metamath Proof Explorer
Description: Version of raleqbidv with additional disjoint variable conditions, not
requiring ax-8 nor df-clel . (Contributed by BJ, 22-Sep-2024)
|
|
Ref |
Expression |
|
Hypotheses |
raleqbidvv.1 |
|
|
|
raleqbidvv.2 |
|
|
Assertion |
raleqbidvv |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
raleqbidvv.1 |
|
2 |
|
raleqbidvv.2 |
|
3 |
2
|
adantr |
|
4 |
1 3
|
raleqbidva |
|