Metamath Proof Explorer


Theorem raleqbidvv

Description: Version of raleqbidv with additional disjoint variable conditions, not requiring ax-8 nor df-clel . (Contributed by BJ, 22-Sep-2024)

Ref Expression
Hypotheses raleqbidvv.1 φ A = B
raleqbidvv.2 φ ψ χ
Assertion raleqbidvv φ x A ψ x B χ

Proof

Step Hyp Ref Expression
1 raleqbidvv.1 φ A = B
2 raleqbidvv.2 φ ψ χ
3 2 alrimiv φ x ψ χ
4 dfcleq A = B x x A x B
5 1 4 sylib φ x x A x B
6 19.26 x ψ χ x A x B x ψ χ x x A x B
7 3 5 6 sylanbrc φ x ψ χ x A x B
8 imbi12 x A x B ψ χ x A ψ x B χ
9 8 impcom ψ χ x A x B x A ψ x B χ
10 7 9 sylg φ x x A ψ x B χ
11 albi x x A ψ x B χ x x A ψ x x B χ
12 10 11 syl φ x x A ψ x x B χ
13 df-ral x A ψ x x A ψ
14 df-ral x B χ x x B χ
15 12 13 14 3bitr4g φ x A ψ x B χ