Metamath Proof Explorer


Theorem raleqbii

Description: Equality deduction for restricted universal quantifier, changing both formula and quantifier domain. Inference form. (Contributed by David Moews, 1-May-2017)

Ref Expression
Hypotheses raleqbii.1 A = B
raleqbii.2 ψ χ
Assertion raleqbii x A ψ x B χ

Proof

Step Hyp Ref Expression
1 raleqbii.1 A = B
2 raleqbii.2 ψ χ
3 1 eleq2i x A x B
4 3 2 imbi12i x A ψ x B χ
5 4 ralbii2 x A ψ x B χ