Metamath Proof Explorer
Description: Equality deduction for restricted universal quantifier. (Contributed by Glauco Siliprandi, 23-Oct-2021)
|
|
Ref |
Expression |
|
Hypotheses |
raleqd.a |
|
|
|
raleqd.b |
|
|
|
raleqd.e |
|
|
Assertion |
raleqd |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
raleqd.a |
|
2 |
|
raleqd.b |
|
3 |
|
raleqd.e |
|
4 |
1 2
|
raleqf |
|
5 |
3 4
|
syl |
|