Metamath Proof Explorer


Theorem raleqd

Description: Equality deduction for restricted universal quantifier. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses raleqd.a _ x A
raleqd.b _ x B
raleqd.e φ A = B
Assertion raleqd φ x A ψ x B ψ

Proof

Step Hyp Ref Expression
1 raleqd.a _ x A
2 raleqd.b _ x B
3 raleqd.e φ A = B
4 1 2 raleqf A = B x A ψ x B ψ
5 3 4 syl φ x A ψ x B ψ