Metamath Proof Explorer


Theorem raleqdv

Description: Equality deduction for restricted universal quantifier. (Contributed by NM, 13-Nov-2005)

Ref Expression
Hypothesis raleq1d.1 φ A = B
Assertion raleqdv φ x A ψ x B ψ

Proof

Step Hyp Ref Expression
1 raleq1d.1 φ A = B
2 raleq A = B x A ψ x B ψ
3 1 2 syl φ x A ψ x B ψ