Metamath Proof Explorer


Theorem raleqf

Description: Equality theorem for restricted universal quantifier, with bound-variable hypotheses instead of distinct variable restrictions. (Contributed by NM, 7-Mar-2004) (Revised by Andrew Salmon, 11-Jul-2011)

Ref Expression
Hypotheses raleq1f.1 _ x A
raleq1f.2 _ x B
Assertion raleqf A = B x A φ x B φ

Proof

Step Hyp Ref Expression
1 raleq1f.1 _ x A
2 raleq1f.2 _ x B
3 1 2 nfeq x A = B
4 eleq2 A = B x A x B
5 4 imbi1d A = B x A φ x B φ
6 3 5 albid A = B x x A φ x x B φ
7 df-ral x A φ x x A φ
8 df-ral x B φ x x B φ
9 6 7 8 3bitr4g A = B x A φ x B φ