Metamath Proof Explorer
Description: Equality inference for restricted universal quantifier. (Contributed by Paul Chapman, 22-Jun-2011)
|
|
Ref |
Expression |
|
Hypothesis |
raleq1i.1 |
|
|
Assertion |
raleqi |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
raleq1i.1 |
|
2 |
|
raleq |
|
3 |
1 2
|
ax-mp |
|