Metamath Proof Explorer


Theorem raleqi

Description: Equality inference for restricted universal quantifier. (Contributed by Paul Chapman, 22-Jun-2011)

Ref Expression
Hypothesis raleq1i.1 A = B
Assertion raleqi x A φ x B φ

Proof

Step Hyp Ref Expression
1 raleq1i.1 A = B
2 raleq A = B x A φ x B φ
3 1 2 ax-mp x A φ x B φ