Metamath Proof Explorer
Description: Substitution of equal classes into a restricted universal quantifier.
(Contributed by Matthew House, 21-Jul-2025)
|
|
Ref |
Expression |
|
Hypotheses |
raleqtrdv.1 |
|
|
|
raleqtrdv.2 |
|
|
Assertion |
raleqtrdv |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
raleqtrdv.1 |
|
| 2 |
|
raleqtrdv.2 |
|
| 3 |
2
|
raleqdv |
|
| 4 |
1 3
|
mpbid |
|