Metamath Proof Explorer


Theorem raleqtrrdv

Description: Substitution of equal classes into a restricted universal quantifier. (Contributed by Matthew House, 21-Jul-2025)

Ref Expression
Hypotheses raleqtrrdv.1 φ x A ψ
raleqtrrdv.2 φ B = A
Assertion raleqtrrdv φ x B ψ

Proof

Step Hyp Ref Expression
1 raleqtrrdv.1 φ x A ψ
2 raleqtrrdv.2 φ B = A
3 2 raleqdv φ x B ψ x A ψ
4 1 3 mpbird φ x B ψ