Metamath Proof Explorer


Theorem ralf0

Description: The quantification of a falsehood is vacuous when true. (Contributed by NM, 26-Nov-2005) (Proof shortened by JJ, 14-Jul-2021) Avoid df-clel , ax-8 . (Revised by Gino Giotto, 2-Sep-2024)

Ref Expression
Hypothesis ralf0.1 ¬ φ
Assertion ralf0 x A φ A =

Proof

Step Hyp Ref Expression
1 ralf0.1 ¬ φ
2 r19.26 x A ¬ φ φ x A ¬ φ x A φ
3 pm2.24 φ ¬ φ
4 3 impcom ¬ φ φ
5 4 ralimi x A ¬ φ φ x A
6 df-ral x A x x A
7 dfnot ¬ x A x A
8 7 bicomi x A ¬ x A
9 8 albii x x A x ¬ x A
10 6 9 sylbb x A x ¬ x A
11 id x A x A
12 falim x A
13 11 12 pm5.21ni ¬ x A x A
14 df-clab x y | x y
15 sbv x y
16 14 15 bitri x y |
17 13 16 bitr4di ¬ x A x A x y |
18 17 alimi x ¬ x A x x A x y |
19 dfcleq A = y | x x A x y |
20 18 19 sylibr x ¬ x A A = y |
21 dfnul4 = y |
22 20 21 eqtr4di x ¬ x A A =
23 5 10 22 3syl x A ¬ φ φ A =
24 2 23 sylbir x A ¬ φ x A φ A =
25 24 ex x A ¬ φ x A φ A =
26 1 a1i x A ¬ φ
27 25 26 mprg x A φ A =
28 rzal A = x A φ
29 27 28 impbii x A φ A =