Metamath Proof Explorer


Theorem ralf0OLD

Description: Obsolete version of ralf0 as of 2-Sep-2024. (Contributed by NM, 26-Nov-2005) (Proof shortened by JJ, 14-Jul-2021) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis ralf0OLD.1 ¬ φ
Assertion ralf0OLD x A φ A =

Proof

Step Hyp Ref Expression
1 ralf0OLD.1 ¬ φ
2 mtt ¬ φ ¬ x A x A φ
3 1 2 ax-mp ¬ x A x A φ
4 3 albii x ¬ x A x x A φ
5 eq0 A = x ¬ x A
6 df-ral x A φ x x A φ
7 4 5 6 3bitr4ri x A φ A =