Metamath Proof Explorer


Theorem ralfal

Description: Two ways of expressing empty set. (Contributed by Glauco Siliprandi, 24-Jan-2024)

Ref Expression
Hypothesis ralfal.1 _ x A
Assertion ralfal A = x A

Proof

Step Hyp Ref Expression
1 ralfal.1 _ x A
2 df-fal ¬
3 2 ralbii x A x A ¬
4 ralnex x A ¬ ¬ x A
5 3 4 bitri x A ¬ x A
6 rextru x x A x A
7 6 notbii ¬ x x A ¬ x A
8 1 neq0f ¬ A = x x A
9 8 con1bii ¬ x x A A =
10 5 7 9 3bitr2ri A = x A