Metamath Proof Explorer


Theorem ralidm

Description: Idempotent law for restricted quantifier. (Contributed by NM, 28-Mar-1997) Reduce axiom usage. (Revised by Gino Giotto, 2-Sep-2024)

Ref Expression
Assertion ralidm x A x A φ x A φ

Proof

Step Hyp Ref Expression
1 df-ral x A x A φ x x A x A φ
2 df-ral x A φ x x A φ
3 ax-1 x x A φ x A x x A φ
4 3 axc4i x x A φ x x A x x A φ
5 pm2.21 ¬ x A x A φ
6 sp x x A φ x A φ
7 5 6 ja x A x x A φ x A φ
8 7 alimi x x A x x A φ x x A φ
9 4 8 impbii x x A φ x x A x x A φ
10 2 bicomi x x A φ x A φ
11 10 imbi2i x A x x A φ x A x A φ
12 11 albii x x A x x A φ x x A x A φ
13 2 9 12 3bitrri x x A x A φ x A φ
14 1 13 bitri x A x A φ x A φ