Metamath Proof Explorer


Theorem ralidmOLD

Description: Obsolete version of ralidm as of 2-Sep-2024. (Contributed by NM, 28-Mar-1997) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion ralidmOLD x A x A φ x A φ

Proof

Step Hyp Ref Expression
1 rzal A = x A x A φ
2 rzal A = x A φ
3 1 2 2thd A = x A x A φ x A φ
4 neq0 ¬ A = x x A
5 df-ral x A x A φ x x A x A φ
6 nfra1 x x A φ
7 6 19.23 x x A x A φ x x A x A φ
8 5 7 bitri x A x A φ x x A x A φ
9 biimt x x A x A φ x x A x A φ
10 8 9 bitr4id x x A x A x A φ x A φ
11 4 10 sylbi ¬ A = x A x A φ x A φ
12 3 11 pm2.61i x A x A φ x A φ