Metamath Proof Explorer


Theorem ralidmw

Description: Idempotent law for restricted quantifier. Weak version of ralidm , which does not require ax-10 , ax-12 , but requires ax-8 . (Contributed by Gino Giotto, 30-Sep-2024)

Ref Expression
Hypothesis ralidmw.1 x = y φ ψ
Assertion ralidmw x A x A φ x A φ

Proof

Step Hyp Ref Expression
1 ralidmw.1 x = y φ ψ
2 df-ral x A φ x x A φ
3 2 imbi2i x A x A φ x A x x A φ
4 3 albii x x A x A φ x x A x x A φ
5 pm2.21 ¬ x A x A φ
6 eleq1w x = y x A y A
7 6 1 imbi12d x = y x A φ y A ψ
8 7 spw x x A φ x A φ
9 5 8 ja x A x x A φ x A φ
10 9 alimi x x A x x A φ x x A φ
11 7 hba1w x x A φ x x x A φ
12 ax-1 x x A φ x A x x A φ
13 11 12 alrimih x x A φ x x A x x A φ
14 10 13 impbii x x A x x A φ x x A φ
15 4 14 bitri x x A x A φ x x A φ
16 df-ral x A x A φ x x A x A φ
17 15 16 2 3bitr4i x A x A φ x A φ