Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Restricted quantification
Restricted universal and existential quantification
ralimd4v
Metamath Proof Explorer
Description: Deduction quadrupally quantifying both antecedent and consequent.
(Contributed by Scott Fenton , 2-Mar-2025) Reduce DV conditions.
(Revised by Eric Schmidt , 18-Nov-2025)
Ref
Expression
Hypothesis
ralimd4v.1
⊢ φ → ψ → χ
Assertion
ralimd4v
⊢ φ → ∀ x ∈ A ∀ y ∈ B ∀ z ∈ C ∀ w ∈ D ψ → ∀ x ∈ A ∀ y ∈ B ∀ z ∈ C ∀ w ∈ D χ
Proof
Step
Hyp
Ref
Expression
1
ralimd4v.1
⊢ φ → ψ → χ
2
1
ralimdvv
⊢ φ → ∀ z ∈ C ∀ w ∈ D ψ → ∀ z ∈ C ∀ w ∈ D χ
3
2
ralimdvv
⊢ φ → ∀ x ∈ A ∀ y ∈ B ∀ z ∈ C ∀ w ∈ D ψ → ∀ x ∈ A ∀ y ∈ B ∀ z ∈ C ∀ w ∈ D χ