Metamath Proof Explorer


Theorem ralimd4v

Description: Deduction quadrupally quantifying both antecedent and consequent. (Contributed by Scott Fenton, 2-Mar-2025)

Ref Expression
Hypothesis ralimd4v.1 φ ψ χ
Assertion ralimd4v φ x A y B z C w D ψ x A y B z C w D χ

Proof

Step Hyp Ref Expression
1 ralimd4v.1 φ ψ χ
2 1 ralimdvv φ z C w D ψ z C w D χ
3 2 ralimdvv φ x A y B z C w D ψ x A y B z C w D χ