Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Restricted quantification
Restricted universal and existential quantification
ralimd4vOLD
Metamath Proof Explorer
Description: Obsolete version of ralimd4v as of 18-Nov-2025. (Contributed by Scott
Fenton , 2-Mar-2025) (New usage is discouraged.)
(Proof modification is discouraged.)
Ref
Expression
Hypothesis
ralimd4vOLD.1
⊢ φ → ψ → χ
Assertion
ralimd4vOLD
⊢ φ → ∀ x ∈ A ∀ y ∈ B ∀ z ∈ C ∀ w ∈ D ψ → ∀ x ∈ A ∀ y ∈ B ∀ z ∈ C ∀ w ∈ D χ
Proof
Step
Hyp
Ref
Expression
1
ralimd4vOLD.1
⊢ φ → ψ → χ
2
1
ralimdvvOLD
⊢ φ → ∀ z ∈ C ∀ w ∈ D ψ → ∀ z ∈ C ∀ w ∈ D χ
3
2
ralimdvvOLD
⊢ φ → ∀ x ∈ A ∀ y ∈ B ∀ z ∈ C ∀ w ∈ D ψ → ∀ x ∈ A ∀ y ∈ B ∀ z ∈ C ∀ w ∈ D χ