Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Restricted quantification
Restricted universal and existential quantification
ralimd6v
Metamath Proof Explorer
Description: Deduction sextupally quantifying both antecedent and consequent.
(Contributed by Scott Fenton , 5-Mar-2025) Reduce DV conditions.
(Revised by Eric Schmidt , 18-Nov-2025)
Ref
Expression
Hypothesis
ralim6dv.1
⊢ φ → ψ → χ
Assertion
ralimd6v
⊢ φ → ∀ x ∈ A ∀ y ∈ B ∀ z ∈ C ∀ w ∈ D ∀ p ∈ E ∀ q ∈ F ψ → ∀ x ∈ A ∀ y ∈ B ∀ z ∈ C ∀ w ∈ D ∀ p ∈ E ∀ q ∈ F χ
Proof
Step
Hyp
Ref
Expression
1
ralim6dv.1
⊢ φ → ψ → χ
2
1
ralimdvv
⊢ φ → ∀ p ∈ E ∀ q ∈ F ψ → ∀ p ∈ E ∀ q ∈ F χ
3
2
ralimd4v
⊢ φ → ∀ x ∈ A ∀ y ∈ B ∀ z ∈ C ∀ w ∈ D ∀ p ∈ E ∀ q ∈ F ψ → ∀ x ∈ A ∀ y ∈ B ∀ z ∈ C ∀ w ∈ D ∀ p ∈ E ∀ q ∈ F χ