Metamath Proof Explorer


Theorem ralimd6v

Description: Deduction sextupally quantifying both antecedent and consequent. (Contributed by Scott Fenton, 5-Mar-2025)

Ref Expression
Hypothesis ralim6dv.1 φ ψ χ
Assertion ralimd6v φ x A y B z C w D p E q F ψ x A y B z C w D p E q F χ

Proof

Step Hyp Ref Expression
1 ralim6dv.1 φ ψ χ
2 1 ralimdvv φ p E q F ψ p E q F χ
3 2 ralimd4v φ x A y B z C w D p E q F ψ x A y B z C w D p E q F χ